# On compact extensions

This is again a note on my talk in the Szemerédi’s theorem seminar, going through Furstenberg’s book. In this round, my part is to introduce compact extension.
Let $\Gamma$ be an abelian group of measure preserving transformations on $(X, \mathcal{B}, \mu)$, $\alpha: (X, \mathcal{B}, \mu, \Gamma) \rightarrow ( Y, \mathcal{D}, \nu, \Gamma')$ be an extension map.
i.e. $\alpha: X \rightarrow Y$ s.t. $\alpha^{-1}$ sends $\nu-0$ sets to $\mu-0$ sets;

$\gamma'\circ \alpha (x) = \alpha \circ \gamma (x)$

Definition: A sequence of subsets $(I_k)$ of $\Gamma$ is a Folner sequence if $|I_k| \rightarrow \infty$ and for any $\gamma \in \Gamma$,

$\frac{| \gamma I_k \Delta I_k|}{|I_k|} \rightarrow 0$

Proposition: For any Folner sequence $I = (I_k)$ of $\Gamma$, for any $f \in L^1(X)$, $\displaystyle \frac{1}{|I_k|} \sum_{\gamma \in I_k} \gamma f$ converges weakly to the orthogonal projection of $f$ onto the subspace of $\Gamma$-invariant functions. (Denoted $P(f)$ where $P: L^2(X) \rightarrow L^2_{inv}(X)$.

Proof: Let $\mathcal{H}_0 = P^{-1}(\bar{0}) = (L^2_{inv}(X))^\bot$
For all $\gamma \in \Gamma$,

$\gamma (L^2_{inv}(X)) \subseteq L^2_{inv}(X)$

Since $\Gamma$ is $\mu$-preserving, $\gamma$ is unitary on $L^2(X)$. Therefore we also have $\gamma( \mathcal{H}_0) \subseteq \mathcal{H}_0$.

For $f \in \mathcal{H}_0$, suppose there is subsequence $(n_k)$ where $\displaystyle \frac{1}{|I_{n_k}|} \sum_{\gamma \in I_{n_k}} \gamma (f)$ converges weakly to some $g \in L^2(X)$.

By the property that $\frac{| \gamma I_k \Delta I_k|}{|I_k|} \rightarrow 0$, we have for each $\gamma \in \Gamma$, $\gamma(g) = g, \ g$ is $\Gamma$-invariant. i.e. $g \in (\mathcal{H}_0)^\bot$

However, since $f \in \mathcal{H}_0$ hence all $\gamma(f)$ are in $\mathcal{H}_0$ hence $g \in \mathcal{H}_0$. Therefore $g \in \mathcal{H}_0 \cap (\mathcal{H}_0)^\bot$, $g=\bar{0}$

Recall: 1)$X \times_Y X := \{ (x_1, x_2) \ | \ \alpha(x_1) = \alpha(x_2) \}$.

i.e. fibred product w.r.t. the extension map $\alpha: X \rightarrow Y$.

2)For $H \in L^2(X \times_Y X), \ f \in L^2(X)$,

$(H \ast f)(x) = \int H(x_1, x_2) f(x_2) d \mu_{\alpha(x_1)}(x_2)$

Definition: A function $f \in L^2(X)$ is said to be almost periodic if for all $\varepsilon > 0$, there exists $g_1, \cdots g_k \in L^2(X)$ s.t. for all $\gamma \in \Gamma$ and almost every $y \in Y$,

$\displaystyle \min_{1 \leq i \leq k} || \gamma (f) - g_i||_y < \varepsilon$

Proposition: Linear combination of almost periodic functions are almost periodic.

Proof: Immediate by taking all possible tuples of $g_i$ for each almost periodic function in the linear combination corresponding to smaller $\varepsilon$l.

Definition: $\alpha: (X, \mathcal{B}, \mu, \Gamma) \rightarrow ( Y, \mathcal{D}, \nu, \Gamma')$ is a compact extension if:

C1: $\{ H \ast f \ | \ H \in L^\infty (X \times_Y X) \cap \Gamma_{inv} (X \times_Y X)$, $f \in L^2(X) \}$ contains a basis of $L^2(X)$.

C2: The set of almost periodic functions is dense in $L^2(X)$

C3: For all $f \in L^2(X), \ \varepsilon, \delta > 0$, there exists $D \subseteq Y, \ \nu(D) > 1- \delta, \ g_1, \cdots, g_k \in L^2(X)$ s.t. for any $\gamma \in \Gamma$ and almost every $y \in Y$, we have

$\displaystyle \min_{1 \leq i \leq k} || \gamma (f)|_{f^{-1}(D)} - g_i||_y < \varepsilon$

C4: For all $f \in L^2(X), \ \varepsilon, \delta > 0$, there exists $g_1, \cdots, g_k \in L^2(X)$ s.t. for any $\gamma \in \Gamma$, there is a set $D \subseteq Y, \ \nu(D) > 1- \delta$, for all $y \in D$

$\displaystyle \min_{1 \leq i \leq k} || \gamma (f) - g_i||_y < \varepsilon$

C5: For all $f \in L^2(X)$, let $\bar{f} \in L^1(X \times_Y X)$ where

$\bar{f}: (x_1, x_2) \mapsto f(x_1) \cdot f(x_2)$

Let $I=(I_k)$ be a Folner sequence, then $\bar{f}=\bar{0}$ iff $P \bar{f} = \bar{0}$.

Theorem: All five definitions are equivalent.

Proof: “C1 $\Rightarrow$ C2″

Since almost periodic functions are closed under linear combination, it suffice to show any element in a set of basis is approximated arbitrarily well by almost periodic functions.

Let our basis be as given in C1.

For all $H \in L^\infty (X \times_Y X) \cap \Gamma_{inv} (X \times_Y X)$, the associated linear operator $\varphi_H: L^2(X) \rightarrow L^2(X)$ where $\varphi_H: f \mapsto H \ast f$ is bounded. Hence it suffice to check $H \ast f$ for a dense set of $f \in L^2(X)$. We consider the set of all fiberwise bounded $f$ i.e. for all $y \in Y$, $||f||_y \leq M_y$.

For all $\delta > 0$, we perturb $H \ast f$ by multiplying it by the characteristic function of a set of measure at least $1- \delta$ to get an almost periodic function.

“C2 $\Rightarrow$ C3″:

For any $f \in L^2(X)$, there exists $f'$ almost periodic, with $||f-f'||< \frac{\epsilon \sqrt{\delta}}{2}$ . Let $\{ g_1, g_2, \cdots, g_{k-1} \}$ be the functions obtained from the almost periodicity of $f'$ with constant $\varepsilon/2$, $g_k = \bar{0}$.

Let $D = \{ y \ | \ ||f-f'||_y < \varepsilon/2 \}$, since

$|| f - f'||^2 = \int ||f-f'||_y^2 d \nu(y)$

Hence $||f-f'||< \frac{\varepsilon \sqrt{\delta}}{2} \ \Rightarrow \ ||f-f'||^2 < \frac{\varepsilon^2 \delta}{4}$, $\{ y \ | \ ||f-f'||_y > \varepsilon/2 \}$ has measure at most $\delta/2$, therefore $\nu(D) > 1- \delta$.

For all $\gamma \in \Gamma$, if$y \in \gamma^{-1}(D)$ then

$|| \gamma f|_{\alpha^{-1}(D)} - \gamma f'||_y = ||f|_{\alpha^{-1}(D)} - f'||_{\gamma(y)} < \varepsilon /2$

Hence $\displaystyle \min_{1 \leq i \leq k-1} ||\gamma f|_{\alpha^{-1}(D)} - g_i||_y < \varepsilon /2 + \varepsilon /2 = \varepsilon$

If $y \notin \gamma^{-1}(D)$ then $f|_{\alpha^{-1}(D)}$ vanishes on $\alpha^{-1}(\gamma y)$ so that $|| \gamma f|_{\alpha^{-1}(D)} - g_i||_y = 0 < \varepsilon$.

Hence $\alpha$ satisfies C3.

“C3 $\Rightarrow$ C4″:

This is immediate since for all $y \in \gamma^{-1}(D)$, we have $\gamma f = \gamma f|_{\alpha^{-1}(D)}$ on $\alpha^{-1}(y)$ hence

$\displaystyle \min_{1 \leq i \leq k} ||\gamma f - g_i||_y < \min_{1 \leq i \leq k-1} ||\gamma f_{\alpha^{-1}(D)} - g_i||_y < \varepsilon$

$\nu(\gamma^{-1}(D)) = \nu(D) > 1-\delta$. Hence $\alpha$ satisfies C4.

“C4 $\Rightarrow$ C5″:

For all $f \in L^2(X), \ \varepsilon, \delta > 0$, by C4, there exists $g_1, \cdots, g_k \in L^2(X)$ s.t. for any $\gamma \in \Gamma$, there is a set $D \subseteq Y, \ \nu(D) > 1- \delta$, for all $y \in D$

$\displaystyle \min_{1 \leq i \leq k} || \gamma (f) - g_i||_y < \varepsilon$

W.L.O.G. we may suppose all $g_i$ are bounded since by making $\delta$ slighter larger we can modify the unbounded parts to be bounded.

$\bar{g_j} \otimes g_j \in L^\infty(X \times_Y X)$, suppose $P(\bar{f}) = 0$.

Recall in C5 we have $\bar{f}: (x_1, x_2) \mapsto f(x_1) \cdot f(x_2)$, and $\displaystyle P_I \bar{f}(x_1, x_2) = \lim_{k \rightarrow \infty} \frac{1}{|I_k|} \sum_{\gamma \in I+k} f(\gamma x_1) \bar{ f(\gamma x_2)}$.

For each $1 \leq j \leq k$, we have $\int (\bar{g_j} \otimes g_j) \cdot P \bar{f} d(\mu \times_Y \mu) = 0$

Hence we have $\displaystyle \lim_{i \rightarrow \infty} \frac{1}{|I_i|} \sum_{\gamma \in I_i} \int (\bar{g_j(x_1)} g_j(x_2)) \cdot$ $\gamma f(x_1) \bar{\gamma f(x_2)} d\mu \times_Y \mu(x_1, x_2) = 0$

$\Rightarrow \displaystyle \lim_{i \rightarrow \infty} \frac{1}{|I_i|} \sum_{\gamma \in I_i} \int | \int \bar{g_j(x)} \gamma f(x) d\mu_y(x)|^2 d \nu(y) = 0$

$\Rightarrow \displaystyle \lim_{i \rightarrow \infty} \frac{1}{|I_i|} \sum_{\gamma \in I_i} \{ \sum_{j=1}^k \int | \int \bar{g_j(x)} \gamma f(x) d\mu_y(x)|^2 d \nu(y) \} = 0$

Hence for large enough $i$, there exists $\gamma \in I_i$ s.t. $\sum_{j=1}^k \int | \int \bar{g_j(x)} \gamma f(x) d\mu_y(x)|^2 d \nu(y)$ is as small as we want.

We may find $D' \subseteq Y$ with $\nu(D) > 1-\delta$ s.t. for all $y \in D'$ and for all $j$, we have

$| \int \bar{g_j(x)} \gamma f(x) d\mu_y(x)|^2 < \varepsilon^2$

On the other hand, by construction there is $j$ with $|| \gamma f - g_j||^2_y < \varepsilon^2$ for all $y \in D$, with $\nu(D) > 1-\delta$.

Hence for $y \in D \cap D', \ ||f||_{\gamma'^{-1}(y)}^2 = || \gamma f||_y^2 < 3 \varepsilon^2$.

Let $\varepsilon \rightarrow 0, \ \delta \rightarrow 0$ we get $f = \bar{0}$. Hence C5 holds.

“C5 $\Rightarrow$ C1″

Let $f \in L^2(X)$ orthogonal to all of such functions. Let $(I_k)$ be a Folner sequence.

Define $\displaystyle H(x_1, x_2) := \lim_{i \rightarrow \infty} \frac{1}{|I_i|}\sum_{\gamma \in I_i} \gamma f(x_1) \cdot \gamma f(x_2) = P \bar{f}(x_1, x_2)$

Let $H_M(x_1, x_2)$ be equal to $H$ whenever $H(x_1, x_2) \leq M$ and $0$ o.w.

$H$ is $\Gamma$-invariant $\Rightarrow \ H_M$ is $\Gamma$-invariant and bounded.

Therefore $f \bot H_M \ast f$, i.e.

$\int \bar{f(x_1)} \{ \int H_M(x_1, x_2) d \mu_{\alpha(x_1)}(x_2) \} d \mu(x_1) = 0$ <\p>

Since $\mu = \int \mu_y d \nu(y)$, we get

$\int \bar{f} \otimes f \cdot H_M d \mu \times_Y \mu = 0$ <\p>

Hence $H_M \bot (\bar{f} \otimes f)$. For all $\gamma \in \Gamma, \ \gamma (\bar{f} \otimes f) \bot \gamma H_M = H_M$.

Since $H = P \bar{f}$ is an average of $\gamma (\bar{f} \otimes f), \ \Rightarrow \ H \bot H_M$.
$0 = \int \bar{H} \cdot H_M = \int |H_M|^2 \ \Rightarrow \ H_M = \bar{0}$ for all $M$

Hence $H = \bar{0}$. By C5, we obtain $f = \bar{0}$. Hence $\{ H \ast f \ | \ H \in L^\infty (X \times_Y X) \cap \Gamma_{inv} (X \times_Y X)$, $f \in L^2(X) \}$ contain a basis for $L^2(X)$.

Definition: Let $H$ be a subgroup of $\Gamma$, $\alpha: (X, \mathcal{B}, \mu, \Gamma) \rightarrow ( Y, \mathcal{D}, \nu, \Gamma')$ is said to be compact relative to $H$ if the extension $\alpha: (X, \mathcal{B}, \mu, H) \rightarrow ( Y, \mathcal{D}, \nu, H')$ is compact.